A Catalyst-Free Benzylic C-H Bond Olefination of Azaarenes for Direct Mannich-like Reactions

Yizhe Yan, Kun Xu, Yang Fang, and Zhiyong Wang*

Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry, and Department of Chemistry, University of Science and Technology of China, Hefei, 230026, P. R. China

Supporting Information

ABSTRACT: A highly efficient synthesis of *trans*-alkenylazaarene under catalyst-free conditions was developed via the addition of methylazaarenes to *N*-sulfonyl aldimines and a subsequent C–N elimination in situ. A one-pot procedure for this addition—elimination was also developed. The reaction could tolerate a broad substrate scope and give the corresponding alkenylazaarenes in high yields.

Transition-metal-catalyzed sp³ C–H bond functionalizations have emerged as important methods for C–C bond formation in synthetic organic chemistry.^{1,2} Although many excellent results have been reported, the functionalization of a methyl group directly attached to an aromatic ring remains limited.³ Recently, Huang and Rueping reported the palladium or Lewis acid catalyzed benzylic addition of 2-methylazaarenes to *N*sulfonyl aldimines (Scheme 1A).⁴ Concurrently, Kanai and Matsunaga reported a Lewis acid catalyzed benzylic C–H bond functionalization of alkyl-substituted azaarenes.⁵ In their report, a mechanism via premetalation of the 2-methyl group was proposed. In our study about the addition of 2-methylazaarenes to *N*-sulfonyl aldimines, we found that no addition product 4 was observed, but elimination products 3 were obtained in the absence of metal (Scheme 1B).⁶

2-Alkenylazaarenes **3** can be used as antagonist, antiproliferative, antiviral, and antimicrobial agents because of their important biological activities.⁷ Although the aldol reactions of 2-methyl azaarenes were directly used to synthesize alkenylazaarenes in the presence of strong acid or base,⁸ only low E/Z selectivity was obtained. Herein, we report a highly efficient and stereoselective synthesis of alkenylazaarenes through the addition of methylazaarenes to *N*-sulfonyl aldimines and a subsequent C–N elimination in situ without any metal catalyst or other additives. Moreover, a one-pot procedure based on *p*-toluenesulfonamide was developed to simplify this tedious addition—elimination.

Initially, the reaction of 2-methylquinoline (1a) with *N*-tosyl aldimine (2a) was chosen as a model reaction to optimize reaction conditions. Solvent polarity had no effect on the E/Z ratio (Table 1, entries 1–4). However, the less polar solvent (toluene) gave the highest yield (Table 1, entry 4). The optimal temperature was found to be 120 °C (Table 1, entries 4–6). Subsequently, when various Lewis acids were added, the reactions resulted in lower yields and poor selectivities of E/Z (Table 1, entries 7–15). When a base was added, no desired product was observed because *N*-tosyl aldimine was hydrolyzed

to generate the corresponding aldehyde (Table 1, entries 16 and 17). In addition, reducing the amount of 2-methylquinoline incurred a decrease in the reaction yields (Table 1, entries 18 and 19). Therefore, the optimal conditions are those described in entry 4.

Under the optimized reaction conditions, the scope of the reaction substrates was investigated. As shown in Table 2, various N-tosyl aldimines 2a-2u were employed in this reaction. No electronic effect was observed when different substituents were located on the phenyl ring of aromatic aldimines. Both electronwithdrawing and electron-donating substituents were tolerated in this reaction (Table 2, entries 5, 7, 11-14). There seems to be some steric effect in this reaction because R¹ bearing a substituent at ortho-position gave a lower yield in comparison with the R¹ bearing a substituent at *para*-position (Table 2, entries 2, 4-10). The reactions of ring-fused, heterocyclic, and styryl aldimines also gave the corresponding products in satisfactory yields (Table 2, entries 15-17 and 19), except for 2-pyridyl aldimine (Table 2, entry 18). To our delight, aliphatic tosyl aldimines can also be the substrates in this reaction despite slightly lower yields (Table 2, entries 20 and 21). It was noted that in every case an excellent stereoselctivity can be obtained.

Subsequently, various R^2 substitutents on N-sulfonyl aldimines were also examined when R^1 was fixed as a phenyl group. When different sulfonyl groups were used as the N-protecting groups, the reaction can give desired product **3aa** in 84–98% yield (Table 3, entries 1–8). It was noteworthy that aldimine bearing a *m*-nitrobenzenesulfonyl group as an N-protecting group resulted in the highest yield (Table 3, entry 2). These results indicated that the stronger the electron-withdrawing capability of R^2 , the higher the reactivity or the eletrophilicity of sp² carbon of aldimine. Subsequently, only a 10% yield of **3aa** was obtained with benzyl (Bn) as an N-protecting group

 Received:
 May 6, 2011

 Published:
 July 14, 2011

pubs.acs.org/joc

(A) Previous work: transition metal catalysis

(B) This work: no metal catalysis

Table 1. Optimization of Reaction Conditions^a

entry	solvent	additive	temp (°C)	yield $(\%)^b$	E/Z^{c}
1	THF		70	36	>99:1
2	DMF		120	66	>99:1
3	DMSO		120	72	>99:1
4	tol.		120	92	>99:1
5	tol.		140	92	>99:1
6	tol.		80	57	>99:1
7	tol.	$Cu(OAc)_2$	120	54	95:5
8	tol.	CuCl ₂	120	48	87:13
9	tol.	CuBr ₂	120	48	80:20
10	tol.	$Cu(OTf)_2$	120	69	70:30
11^d	tol.	$CuBr_2 + Cu(OTf)_2$	120	80	30:70
12	tol.	CuBr	120	79	>99:1
13	tol.	Cul	120	90	>99:1
14	tol.	FeCl ₃	120	27	83:17
15	tol.	$ZnCl_2$	120	52	90:10
16	tol.	Cs ₂ CO ₃	120	0	
17	tol.	<i>t</i> BuOK	120	0	
18^e	tol.		120	86	>99:1
19 ^f	tol.		120	90	>99:1

^{*a*} Reaction conditions: **1a** (0.6 mmol), **2a** (0.3 mmol), and additive (0.1 equiv) in solvent (0.5 mL) were refluxed for 12 h under N₂. ^{*b*} Isolated yields. ^{*c*} Determined by GC-MS on the basis of peak areas. ^{*d*} CuBr₂ (5 mol %) and Cu(OTf)₂ (5 mol %) were added in a 1:1 ratio. ^{*e*} **1a** (0.3 mmol) was used. ^{*f*} **1a** (0.45 mmol) was used.

(Table 3, entry 9). In addition, when phenyl and butylcarbonyl (Boc) were employed as N-protecting groups, no product was obtained (Table 3, entries 10 and 11).

Table 2. Substrate Scope of Various N-Tosyl Aldimines^a

entry	\mathbb{R}^1	product	yield (%) ^b	E/Z^{c}
, 1	Dh	300	02	>00.1
1		3aa	92 22(22d)	299:1
2	4-CI-Ph	3ab	90(92")	>99:1
3	3-Cl-Ph	3ac	90	>99:1
4	2-Cl-Ph	3ad	86	>99:1
5	4-CF ₃ -Ph	3ae	$94(96^d)$	>99:1
6	2-CF ₃ -Ph	3af	$80(85^d)$	>99:1
7	4-NO ₂ -Ph	3ag	94	>99:1
8	2-NO ₂ -Ph	3ah	90	>99:1
9	4-OMe-Ph	3ai	87	>99:1
10	2-OMe-Ph	3aj	$76(80^d)$	>99:1
11	2,4-di-OMe-Ph	3ak	96	95:5
12	4-Me-Ph	3al	97	>99:1
13	3-Me-Ph	3am	96	>99:1
14	2-Me-Ph	3an	97	>99:1
15	1-naphthyl	3a0	91	>99:1
16	2-furyl	3ap	$79(84^{d})$	>99:1
17	2-thienyl	3aq	$70(85^d)$	99:1
18	2-pyridyl	3ar	trace ^e	
19	PhCH=CH	3as	90	93:7
20	cyclohexyl	3at	71	99:1
21	i-C ₄ H ₉	3au	78	>99:1

^{*a*} Reaction conditions: **1a** (0.6 mmol) and **2** (0.3 mmol) in toluene (0.5 mL) were refluxed at 120 °C for 12 h under N₂. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR on the basis of peak areas. ^{*d*} The system was heated in mesitylene (0.5 mL) at 140 °C. ^{*c*} Unknown complex mixture.

Next, the generality of methylazaarenes was investigated in this reaction. When methylazaarenes (1b-1i and 1m) were

 Table 3. Substrate Scope of Aldimines with Different

 N-Protecting Groups^a

^{*a*} Reaction conditions: **1a** (0.6 mmol) and **2** (0.3 mmol) in toluene (0.5 mL) were refluxed at 120 °C for 12 h under N_2 . ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR on the basis of peak areas.

employed in the reaction, the corresponding products (**3ba-3ia** and **3ma**) were obtained in 77–90% yield with high stereoselectivities (Table 4, entries 1–8 and 12). However, when 1j-11 were used as the substrates, only addition products (**4ja-4la**) were obtained (Table 4, entries 9–11). In addition, 2,6lutidine (**1o**) also gave the desired product **3oa** in 35% yield, while 2-methylpyridine (**1n**) did not give any product (Table 4, entries 13–14). This can be perhaps ascribed to the electronic effect of the methyl group on the pyridyl ring.

In order to improve atom economy and enhance the reaction efficiency, we developed a one-pot procedure for this reaction. When the reaction mixture of 2-methylquinoline, benzaldehyde, and p-toluenesulfonamide with a ratio of 1:1:1 was heated either under nitrogen atmosphere or open to air for 12 h, the product 3aa can be obtained with 93 and 83% isolated yield respectively (Table 5, entries 1 and 3). With this procedure, the tedious isolation of N-tosyl aldimines is avoided. The yield was not increased by increasing the amount of 2-methylquinoline (Table 5, entry 2). Reducing the amount of p-toluenesulfonamide to 0.5 equiv incurred a lower reaction yield of 86% (Table 5, entry 4). Further reducing the amount of *p*-toluenesulfonamide to 0.2 equiv, the reaction yield was slightly decreased (Table 5, entry 5). The reaction hardly proceeded in the absence of *p*-toluenesulfonamide (Table 5, entry 6). It was noted that sulfonamide possibly plays the role of a catalyst in this condensation of aldehydes. Moreover, other aldehydes and azaarenes can also give the olefination products with moderate to good yield under these one-pot conditions (Table 5, entries 7-17).

To get insight into the mechanism of this reaction, several control experiments were performed. The intermediate **4aa** could be synthesized according to the literature and then converted to C-C cleavage product **1a** and C-N cleavage product **3aa**. In addition, **4ja** could also give similar products in mesitylene at a higher temperature (Scheme 2). This indicates that **4** should be the intermediate of reaction, and the addition step may be reversible.

^{*a*} Reaction conditions: 1 (0.6 mmol) and 2a (0.3 mmol) in toluene (0.5 mL) were refluxed at 120 °C for 12 h under N₂. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR on the basis of peak areas. ^{*d*} dr = 1.8:1.

On the basis of the above experimental results, a plausible reaction pathway is proposed in Scheme 3. First, *N*-tosyl aldimine (2a) was formed from benzaldehyde and *p*-toluenesulfonamide in situ. Subsequently, the enamine intermediate 5, which was generated via the requisite disruption of aromaticity of 1a, cooperated with 2a to form the cyclic transition state 6. Then intermediate 4aa was generated via a hydrogen transfer. Finally, the stable *trans*-2-styrylquinoline (3aa) was obtained through the elimination of 4aa in situ (Scheme 3), regenerating *p*-toluenesulfonamide.

In conclusion, we have developed a highly efficient synthesis of *trans*-alkenylazaarenes under catalyst-free conditions. The onepot procedure realizes successfully the condensation of aldehydes and methylazaarenes with the use of an organocatalyst, Table 5. One-Pot Synthesis of 3^a

^{*a*} Reaction conditions: **1** (0.3 mmol), aldehyde (0.3 mmol), and *p*-toluenesulfonamide (0.3 mmol) in toluene (0.5 mL) were refluxed at 120 °C for 12 h under N₂. ^{*b*} Isolated yields. ^{*c*} Determined by ¹H NMR on the basis of peak areas. ^{*d*} 2 equiv of **1a** was used. ^{*e*} Under air. ^{*f*} 0.5 equiv of *p*-toluenesulfonamide was used. ^{*g*} 0.2 equiv of *p*-toluenesulfonamide was used. ^{*h*} In the absence of *p*-toluenesulfonamide.

Scheme 2. Control Experiments

tosylamine. Further investigations of the mechanism and the application of the reaction are currently underway in our laboratory.

EXPERIMENTAL SECTION

General Procedure for the Synthesis of Alkenylazaarene. A solution of 1a (81 μ L, 0.6 mmol) and 2a (77.7 mg, 0.3 mmol) in toluene (0.5 mL) was refluxed at 120 °C for 12 h in a reaction tube under N₂. After the mixture was cooled to room temperature, the solvent was removed under reduced pressure. Then the concentrate was purified by column chromatography on silica gel, affording 3aa as a white solid (64 mg, 92% yield).

General Procedure for the Synthesis of N-Sulfonyl Aldimines.⁹ Benzaldehyde (2.12 g, 20 mmol), *p*-toluenesulfonamide

(3.42 g, 20 mmol), and Si(OEt)₄ (4.7 mL, 21 mmol) were placed in a flask and heated at 120 °C for 12 h . After cooling, the mixture was crystallized with ethyl acetate and petroleum ether. The resulting solid was collected by filtration and then dried in a vacuum, giving **2a** as a white solid (3 g, 58% yield).

General Procedure for the Synthesis of Methylazaarenes. Synthesis of **1b**. The mixture of *o*-aminobenzophenone (394 mg, 2 mmol) and acetone (0.5 mL) in 20% KOH ethanol solution (10 mL) was refluxed overnight at 80 °C. Then the reaction mixture was quenched with hydrochloric acid (1 M) and extracted three times with EtOAc (3×20 mL). The combined organic layers were washed with brine once and dried over Na₂SO₄. The organic phase was concentrated in a vacuum and purified by chromatographic column over silica gel, giving 2-methyl-4-phenylquinoline (1b) as a light yellow solid.

Synthesis of **1c**.¹⁰ The mixture of *o*-aminobenzophenone (394 mg, 2 mmol), acetylacetone (240 mg, 2.4 mmol), and a grain of I₂ in EtOH (5 mL) was stirred overnight at room temperature. Then the mixture was quenched with water (15 mL) and extracted with EtOAc (3 \times 20 mL). The organic phase was dried over Na₂SO₄ and purified by column chromatography on silica gel, giving 2-methyl-3-acetyl-4-phenylquinoline (**1c**) as a white solid.

Synthesis of **1d-1j**.¹¹ Aniline (2 mmol) was added into a solution of phosphotungstic acid (2 mmol) in water (10 mL). To this was added crotonaldehyde (3 mmol) in toluene (15 mL), and the mixture was heated at 100 °C for 6 h. After cooling to room temperature, the mixture was basified by sodium hydroxide solution and extracted three times with EtOAc (3 \times 25 mL). The combined organic layers were dried over Na₂SO₄, concentrated, and purified by column chromatography on silica gel.

Synthesis of $1k^{12}$ A solution of Sulfo-mix (5.85 g), FeSO₄·7H₂O (140 mg), H₃BO₃ (240 mg), water (5 mL), and 1-naphthylamine (572 mg, 4 mmol) was warmed to 110 °C, and crotonaldehyde (350 mg, 5 mmol) was added dropwise over 30 min. The reaction mixture was heated at 130 °C for 5 h. The cooled solution was basified with aqueous 20% NaOH and extracted with CHCl₃ (3 × 20 mL). The combined organic layers were washed with brine and dried over Na₂SO₄. The organic phase was concentrated in a vacuum and purified by chromatographic column over silica gel, giving 2-methylbenzo[*h*]quinoline (1k) as a yellow solid.

Synthesis of the Intermediate **4aa**.⁴ Under N₂, Pd(OAc)₂ (6.8 mg, 5 mol %), 1,10-phenanthroline (5.4 mg, 5 mol %), and dry CH₂Cl₂ (2 mL) were added to a tube. The mixture was kept stirring at room temperature for 0.5 h. After evaporating CH₂Cl₂, the mixture of **1a** (1.5 mmol) and **2a** (0.6 mmol) in dry THF (3 mL) was heated at 120 °C for 24 h. After the completion of the reaction, the solvent was removed under reduced pressure and the residue was purified by flash column chromatography on silica gel, giving **4aa** as a white solid (145 mg, 60% yield).

Characterization Data for the Products. (*E*)-2-Styrylquinoline (**3aa**).¹³ White solid (*E*:*Z* > 99:1, 92% yield): mp 98–100 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.14–8.07 (m, 2H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.74–7.63 (m, 5H), 7.52–7.30 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 156.0, 148.3, 136.6, 136.4, 134.5, 129.8, 129.3, 129.1, 128.8, 128.7, 127.6, 127.4, 126.2, 119.3. HRMS calcd for C₁₇H₁₃N: 231.1048. Found: 231.1045.

(*E*)-2-(4-*Chlorostyryl*)*quinoline* (**3***ab*).¹⁴ White solid (*E*:*Z* > 99:1, 90% yield): mp 143–145 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.14 (d, *J* = 8.4 Hz, 1H), 8.09 (d, *J* = 8.4 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.75–7.62 (m, 3H), 7.59–7.48 (m, 3H), 7.41–7.35 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.6, 148.3, 136.5, 135.1, 134.4, 133.1, 129.9, 129.5, 129.3, 129.1, 128.5, 127.6, 127.5, 126.4, 119.4. HRMS calcd for C₁₇H₁₂ClN: 265.0658. Found: 265.0660.

(*E*)-2-(3-Chlorostyryl)quinoline (**3ac**).⁶ White solid (*E*:*Z* > 99:1, 90% yield): mp 97–99 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.15

(d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 8.7 Hz, 1H), 7.79 (d, *J* = 8.1 Hz, 1H), 7.75–7.62 (m, 4H), 7.54–7.49 (m, 2H), 7.44–7.27 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 155.4, 148.3, 138.5, 136.5, 134.8, 132.9, 131.0, 130.3, 130.1, 129.9, 129.3, 128.5, 127.6, 127.2, 126.5, 125.5, 119.5. HRMS calcd for C₁₇H₁₂ClN: 265.0658. Found: 265.0655.

(*E*)-2-(2-Chlorostyryl)quinoline (**3ad**).¹⁵ Light yellow solid (*E*:*Z* > 99:1, 86% yield): mp 78–80 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.16–8.00 (m, 3H), 7.84–7.68 (m, 4H), 7.53–7.39 (m, 3H), 7.33–7.21 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 148.2, 136.5, 134.6, 134.1, 131.7, 130.3, 130.0, 129.8, 129.5, 129.3, 127.6, 127.5, 127.1, 127.0, 127.0, 119.0. HRMS calcd for C₁₇H₁₂ClN: 265.0658. Found: 265.0659.

(*E*)-2-(4-(*Trifluoromethyl*)styryl)quinoline (**3ae**). White solid (*E*:*Z* > 99:1, 94% yield): mp 124–126 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.17 (d, *J* = 8.7 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.76–7.63 (m, 7H), 7.56–7.45 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 155.2, 148.3, 140.0, 136.5, 132.6, 131.3, 130.3, 130.0, 129.3, 127.6, 127.3, 126.6, 126.0, 125.8, 125.7, 119.5. HRMS calcd for C₁₈H₁₂F₃N: 299.0922. Found: 299.0925.

(*E*)-2-(2-(*Trifluoromethyl*)*styry*)*quinoline* (**3***a***f**). White solid (*E*:*Z* > 99:1, 80% yield): mp 93–95 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 8.7 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 8.02–7.91 (m, 2H), 7.81 (d, *J* = 8.1 Hz, 1H), 7.77–7.72 (m, 3H), 7.70–7.40 (m, 4H); ¹³C NMR (75 MHz, CDCl₃) δ 155.6, 148.3, 136.6, 133.4, 132.2, 130.0, 129.95, 129.5, 128.2, 127.6, 127.5, 126.7, 126.3, 126.24, 126.17, 126.1, 126.0, 122.7, 118.9. HRMS calcd for C₁₈H₁₂F₃N: 299.0922. Found: 299.0918.

(*E*)-2-(4-Nitrostyryl)quinoline (**3ag**).¹⁶ Light yellow solid (*E*:*Z* > 99:1, 94% yield): mp 170–172 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, *J* = 9.0 Hz, 2H), 8.20 (d, *J* = 8.4 Hz, 1H), 8.12 (d, *J* = 8.4 Hz, 1H), 7.84–7.72 (m, SH), 7.68 (d, *J* = 8.4 Hz, 1H), 7.41–7.35 (m, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 154.7, 148.3, 147.5, 143.0, 136.8, 133.2, 131.8, 131.0, 130.2, 129.4, 128.9, 127.7, 126.9, 124.2, 119.8. HRMS calcd for C₁₇H₁₂N₂O₂: 276.0899. Found: 276.0904.

(*E*)-2-(2-Nitrostyryl)quinoline (**3ah**).¹³ Light yellow solid (*E*:*Z* > 99:1, 90% yield): mp 102–104 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.18 (d, *J* = 8.7 Hz, 1H), 8.14–8.08 (m, 2H), 8.02 (d, *J* = 8.1 Hz, 1H), 7.89 (d, *J* = 7.8 Hz, 1H), 7.83–7.68 (m, 3H), 7.65 (d, *J* = 7.8 Hz, 1H), 7.64–7.47 (m, 2H), 7.42 (d, *J* = 16.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 155.2, 148.3, 148.2, 136.7, 134.3, 133.4, 132.4, 130.0, 129.5, 129.2, 128.9, 128.6, 127.6, 126.8, 124.9, 119.1. HRMS calcd for C₁₇H₁₂N₂O₂: 276.0899. Found: 276.0901.

(*E*)-2-(4-Methoxystyryl)quinoline (**3ai**).¹⁷ Light yellow solid (*E*:*Z* > 99:1, 87% yield): mp 125–127 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.12–8.06 (m, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.70–7.57 (m, SH), 7.50–7.45 (t, 1H), 7.29 (d, *J* = 16.5 Hz, 1H), 6.93 (d, *J* = 8.9 Hz, 2H), 3.84 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 160.2, 156.4, 148.3, 136.3, 134.2, 130.7, 129.8, 129.4, 129.1, 128.7, 127.6, 127.3, 126.9, 126.4, 126.0, 119.2, 114.3, 55.4. HRMS calcd for C₁₈H₁₅NO: 261.1154. Found: 261.1155.

(E)-2-(2-Methoxystyryl)quinoline (**3a**j). Yellow oil (E:Z > 99:1, 76% yield): ¹H NMR (300 MHz, CDCl₃) δ 8.14–8.09 (m, 2H), 8.03

(d, J = 16.8 Hz, 1H), 7.79–7.67 (m, 4H), 7.52–7.46 (m, 2H), 7.32–7.25 (m, 1H), 7.03–6.92 (m, 2H), 3.93 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 157.5, 156.8, 148.2, 136.3, 129.9, 129.7, 129.54, 129.5, 129.2, 127.5, 127.3, 126.1, 125.5, 120.9, 119.1, 111.1, 55.6. HRMS calcd for C₁₈H₁₅NO: 261.1154. Found: 261.1156.

(*E*)-2-(2,4-Dimethoxystyryl)quinoline (**3***ak*). Bright yellow oil (*E*:*Z* = 95:5, 96% yield): ¹H NMR (300 MHz, CDCl₃) δ 8.11–8.07 (m, 2H), 7.93 (d, *J* = 16.8 Hz, 1H), 7.82–7.63 (m, 4H), 7.50–7.26 (m, 2H), 7.32–7.25 (m, 1H), 6.58–6.48 (m, 2H), 3.91 (s, 3H), 3.85 (s, 3H), 3.81 (s, 0.13H), 3.79 (s, 0.13H); ¹³C NMR (75 MHz, CDCl₃) δ 161.4, 158.7, 157.1, 148.1, 136.1, 129.55, 129.5, 129.4, 128.8, 128.2, 127.5, 127.0, 126.3, 125.8, 118.8, 118.5, 105.2, 98.4, 55.5, 55.4. HRMS calcd for C₁₉H₁₇NO₂: 291.1259. Found: 291.1255.

(*E*)-2-(4-*Methylstyryl*)*quinoline* (**3a**]).⁶ White solid (*E*:*Z* > 99:1, 97% yield): mp 140–142 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.14–8.07 (m, 2H), 7.78 (d, *J* = 8.1 Hz, 1H), 7.73–7.63 (m, 3H), 7.56–7.46 (m, 3H), 7.38 (d, *J* = 16.5 Hz, 1H), 7.26–7.19 (m, 2H), 2.38 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.2, 148.3, 138.8, 136.3, 134.5, 133.8, 131.0, 129.7, 129.6, 129.2, 128.0, 127.5, 127.3, 126.1, 119.2, 21.4. HRMS calcd for C₁₈H₁₅N: 245.1204. Found: 245.1208.

(*E*)-2-(3-*Methylstyryl*)*quinoline* (**3***am*). White solid (*E*:*Z* > 99:1, 96% yield): mp 71–73 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.12–8.06 (m, 2H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.73–7.62 (m, 3H), 7.51–7.37 (m, 4H), 7.32–7.24 (m, 1H), 7.03–6.92 (d, *J* = 7.2 Hz, 1H), 2.39 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.1, 148.3, 138.4, 136.5, 136.3, 134.6, 129.7, 129.5, 129.2, 128.9, 128.7, 128.0, 127.5, 127.4, 126.1, 124.5, 119.2, 21.5. HRMS calcd for C₁₈H₁₅N: 245.1204. Found: 245.1205.

(*E*)-2-(2-*Methylstyryl*)*quinoline* (**3an**). Colorless oil (*E*:*Z* > 99:1, 97% yield): ¹H NMR (300 MHz, CDCl₃) δ 8.13–8.09 (m, 2H), 7.94 (d, *J* = 16.2 Hz, 1H), 7.79–7.64 (m, 4H), 7.51–7.45 (m, 1H), 7.32 (d, *J* = 16.2 Hz, 1H), 7.26–7.20 (m, 3H), 2.51 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.2, 148.3, 136.6, 136.4, 135.6, 132.2, 130.7, 130.2, 129.8, 129.3, 128.6, 127.6, 127.4, 126.4, 126.2, 125.9, 119.4, 20.1. HRMS calcd for C₁₈H₁₅N: 245.1204. Found: 245.1201.

(*E*)-2-(2-(*Naphthalen-1-yl*)vinyl)quinoline (**3ao**).⁶ Yellow solid (*E*:*Z* > 99:1, 91% yield): mp 103–105 °C; ¹H NMR (300 MHz, CDCl₃) δ 8.53 (d, *J* = 16.2 Hz, 1H), 8.34 (d, *J* = 8.4 Hz, 1H), 8.16 (t, *J* = 8.1 Hz, 2H), 7.93–7.70 (m, 6H), 7.59–7.46 (m, 5H); ¹³C NMR (75 MHz, CDCl₃) δ 156.0, 148.3, 136.4, 134.0, 133.8, 131.7, 131.5, 131.4, 129.8, 129.3, 129.0, 128.7, 127.6, 127.4, 126.4, 126.3, 126.0, 125.7, 124.2, 123.8, 119.6. HRMS calcd for C₂₁H₁₅N: 281.1204. Found: 281.1202.

(*E*)-2-(*2*-(*Furan-2-yl*)*vinyl*)*quinoline* (**3ap**).⁶ Yellow oil (*E*:*Z* > 99:1, 79% yield): ¹H NMR (300 MHz, CDCl₃) δ 8.10 (dd, *J*₁ = 8.4 Hz, *J*₂ = 3.3 Hz, 2H), 7.78–7.67 (m, 2H), 7.61–7.45 (m, 4H), 7.29 (d, *J* = 16.2 Hz, 1H), 6.56 (d, *J* = 3 Hz, 1H), 6.47 (dd, *J*₁ = 9.0 Hz, *J*₂ = 1.8 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 153.0, 148.3, 143.3, 136.54, 136.49, 129.9, 129.2, 127.6, 127.4, 126.8, 126.2, 122.0, 120.0, 112.1, 111.4, 111.3. HRMS calcd for C₁₅H₁₁NO: 221.0841. Found: 221.0843.

(E)-2-(2-(Thiophen-2-yl)vinyl)quinoline (**3aq**). Light yellow solid (E:Z = 99:1, 70% yield): mp 89–91 °C; ¹H NMR (300 MHz, CDCl₃)

δ 8.10 (t, *J* = 8.1 Hz, 2H), 7.86 (d, *J* = 15.9 Hz, 1H), 7.77 (d, *J* = 8.1 Hz, 1H), 7.70 (t, *J* = 7.8 Hz, 1H), 7.58 (d, *J* = 8.7, 1H), 7.52–7.46 (m, 1H), 7.31–7.19 (m, 3H), 7.05 (t, *J* = 4.2 Hz, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 155.7, 148.4, 142.2, 136.51, 136.46, 129.93, 129.89, 129.2, 128.25, 128.16, 127.9, 127.6, 127.5, 127.4, 126.24, 126.22, 126.15, 119.5. HRMS calcd for C₁₅H₁₁NS: 237.0612. Found: 237.0610.

(*E*)-2-(2-(*Pyridin-2-yl*)*vinyl*)*quinoline* (**3***ar*). Light yellow solid (*E*:*Z* > 99:1, 81% yield): mp 95–97 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.65 (dq, *J*₁ = 4.8 Hz, *J*₂ = 0.8 Hz, 1H), 8.12 (dd, *J*₁ = 11.6 Hz, *J*₂ = 8.8 Hz, 2H), 7.83 (d, *J* = 6.0 Hz, 2H), 7.80–7.77 (m, 1H), 7.73–7.65 (m, 3H), 7.58–7.55 (m, 1H), 7.53–7.48 (m, 1H), 6.97 (d, *J*₁ = 7.6 Hz, 1H, *J*₂ = 4.8 Hz, *J*₃ = 1.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 155.4, 155.2, 149.9, 148.4, 136.7, 136.6, 133.9, 132.7, 129.9, 129.5, 127.7, 127.6, 126.5, 122.92, 122.87, 120.43. HRMS calcd for C₁₆H₁₂N₂: 232.1000. Found: 232.1005.

2-((*1E*,3*E*)-4-Phenylbuta-1,3-dienyl)quinoline (**3as**).⁶ Light yellow solid (*E*:*Z* = 93:7, 90% yield): mp 117–119 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.11–8.06 (m, 2H), 7.77–7.66 (m, 2H), 7.58–7.46 (m, 5H), 7.40–7.25 (m, 3H), 7.10–7.02 (dd, *J*₁ = 15.6 Hz, *J*₂ = 10.8 Hz, 1H), 6.97 (d, *J* = 15.6 Hz, 1H), 6.86 (d, *J* = 15.6 Hz, 1H), 6.59 (d, 0.16H); ¹³C NMR (100 MHz, CDCl₃) δ 156.0, 148.2, 138.0, 137.5, 137.1, 136.5, 136.3, 136.1, 135.6, 135.3, 132.7, 130.0, 129.71, 129.68, 129.2, 128.88, 128.81, 128.7, 128.3, 128.2, 127.61, 127.55, 127.4, 127.1, 126.93, 126.87, 126.7, 126.35, 126.32, 123.1, 119.5. HRMS calcd for C₁₉H₁₅N: 257.1204. Found: 257.1205.

(*E*)-2-(2-Cyclohexylvinyl)quinoline (**3at**). Light yellow oil (*E*:*Z* = 99:1, 71% yield). ¹H NMR (300 MHz, CDCl₃) δ 8.04 (dd, *J*₁ = 8.1 Hz, *J*₂ = 5.6 Hz, 2H), 7.74 (d, *J* = 8.1 Hz, 1H), 7.69–7.63 (m, 1H), 7.53 (d, *J* = 8.9 Hz, 1H), 7.48–7.42 (m, 1H), 6.78 (dd, *J*₁ = 16.2 Hz, *J*₂ = 6.3 Hz, 1H), 6.68 (d, *J* = 16.2 Hz, 1H), 2.30–2.21 (m, 1H), 1.91–1.68 (m, 4H), 1.43–1.19 (m, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 156.9, 148.2, 143.6, 136.3, 129.6, 129.2, 128.8, 127.5, 127.3, 125.9, 118.9, 41.3, 37.7, 26.3, 26.2, 25.9. HRMS calcd for C₁₇H₁₉N: 237.1517. Found: 237.1514.

(*E*)-2-(4-Methylpent-1-enyl)quinoline (**3au**). Light yellow oil (*E*:*Z* > 99:1, 78% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.05 (dd, *J*₁ = 8.4 Hz, *J*₂ = 3.6 Hz, 2H), 7.74 (dd, *J*₁ = 8.4 Hz, *J*₂ = 1.2 Hz, 1H), 7.69–7.64 (m, 1H), 7.53 (d, *J* = 8.8 Hz, 1H), 7.48–7.43 (m, 1H), 6.83–6.77 (m, 1H), 6.72 (d, *J* = 16.0 Hz, 1H), 2.25–2.20 (m, 2H), 1.90–1.70 (m, 1H), 0.99 (d, *J* = 6.8 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 156.5, 148.1, 137.0, 136.3, 132.2, 129.7, 129.2, 127.5, 127.3, 126.0, 118.8, 42.6, 28.5, 22.6. HRMS calcd for C₁₅H₁₇N: 211.1361. Found: 211.1364.

(*E*)-4-Phenyl-2-styrylquinoline (**3ba**). White solid (*E*:*Z* = 92:8, 91% yield): mp 145–147 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.18 (d, *J* = 8.4 Hz, 1H), 7.86 (dd, *J*₁ = 8.4 Hz, *J*₂ = 0.8 Hz, 1H), 7.74–7.62 (m, 5H), 7.56–7.32 (m, 10H); ¹³C NMR (100 MHz, CDCl₃) δ 155.5, 149.2, 138.4, 136.6, 135.0, 129.9, 129.7, 129.5, 129.4, 129.0, 128.9, 128.8, 128.63, 128.55, 128.4, 128.1, 127.5, 126.5, 126.2, 125.9, 125.8, 119.6. HRMS calcd for C₂₃H₁₇N: 307.1361. Found: 307.1365.

(*E*)-1-(4-Phenyl-2-styrylquinolin-3-yl)ethanone (**3***ca*). White solid (*E*:*Z* > 99:1, 80% yield): mp 189–191 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.19 (d, *J* = 8.4 Hz, 1H), 8.10 (d, *J* = 15.6 Hz, 1H), 7.76–7.71 (m, 1H), 7.63–7.53 (m, 3H), 7.53–7.50 (m, 3H), 7.46–7.31 (m, 6H), 7.22 (d, *J* = 15.6 Hz, 1H), 2.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 205.8, 150.3, 148.0, 144.6, 137.1, 136.6, 135.3, 134.7, 130.5, 130.2, 129.6, 129.04, 128.96, 128.8, 127.8, 126.9, 126.3, 125.7, 124.1, 33.0. HRMS calcd for C₂₅H₁₉NO: 349.1467. Found: 349.1466.

(*E*)-6-*Methoxy*-2-styrylquinoline (**3da**).⁶ White solid (*E*:*Z* > 99:1, 77% yield): mp 149–151 °C; ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 8.8 Hz, 2H), 7.63–7.58 (m, 4H), 7.40–7.28 (m, 5H), 7.03 (d, *J* = 2.8 Hz, 1H), 3.91 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 157.8, 153.8, 144.2, 136.8, 135.3, 133.5, 130.6, 129.0, 128.9, 128.5, 128.4, 127.3, 122.5, 119.6, 105.4, 55.7. HRMS calcd for C₁₈H₁₅NO: 261.1154. Found: 261.1155.

(*E*)-6-*Methyl*-2-styrylquinoline (**3ea**).¹³ White solid (*E*:*Z* > 99:1, 84% yield): mp 136–138 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03–7.98

(m, 2H), 7.68–7.60 (m, 4H), 7.55–7.52 (m, 2H), 7.43–7.38 (m, 3H), 7.34–7.30 (m, 1H), 2.53 (s, 3H); ^{13}C NMR (100 MHz, CDCl₃) δ 154.2, 145.8, 135.7, 135.2, 134.8, 133.1, 131.2, 128.1, 127.92, 127.89, 127.6, 126.5, 126.3, 125.6, 118.3, 20.7. HRMS calcd for $C_{18}\text{H}_{15}\text{N}\text{:}$ 245.1204. Found: 245.1206.

(*E*)-6-*Nitro-2-styrylquinoline* (**3fa**). Yellow solid (*E*:*Z* > 99:1, 88% yield): mp 192–194 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (d, *J* = 2.4 Hz, 1H), 8.46 (dd, *J*₁ = 9.2 Hz, *J*₂ = 2.8 Hz, 1H), 8.28 (d, *J* = 8.4 Hz, 1H), 8.18 (d, *J* = 9.2 Hz, 1H), 7.84 (d, *J* = 16.0 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.67–7.64 (m, 2H), 7.45–7.35 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 150.5, 145.2, 138.2, 137.4, 136.0, 130.8, 129.6, 129.1, 127.85, 127.78, 126.1, 124.4, 123.5, 121.5. HRMS calcd for C₁₇H₁₂N₂O₂: 276.0899. Found: 276.0896.

(*E*)-6-Bromo-2-styrylquinoline (**3ga**).¹³ White solid (*E*:*Z* > 99:1, 83% yield): mp 168–170 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 8.8 Hz, 1H), 7.97–7.92 (m, 2H), 7.78–7.62 (m, 5H), 7.42–7.31 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 156.4, 146.8, 136.4, 135.6, 135.4, 133.4, 130.9, 129.7, 129.03, 128.98, 128.5, 128.4, 127.5, 120.3, 120.1. HRMS calcd for C₁₇H₁₂BrN: 309.0153. Found: 309.0152.

(*E*)-6-*Chloro-2-styrylquinoline* (**3ha**).¹³ White solid (*E*:*Z* = 91:9, 86% yield): mp 156–158 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.03 (dd, *J*₁ = 8.4 Hz, *J*₂ = 3.2 Hz, 2H), 7.76–7.62 (m, 6H), 7.43–7.26 (m, 4H); ¹³C NMR (100 MHz, CDCl₃) δ 156.3, 146.6, 136.5, 135.7, 135.3, 132.0, 130.9, 130.8, 129.2, 129.01, 128.98, 128.52, 128.45, 128.2, 128.0, 127.5, 126.4, 123.1, 120.3. HRMS calcd for C₁₇H₁₂CIN: 265.0658. Found: 265.0665.

(*E*)-8-*Methoxy*-2-*styrylquinoline* (**3ia**).⁶ Colorless oil (*E*:*Z* > 99:1, 90% yield): ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 4.4 Hz, 1H), 7.74 (d, *J* = 8.4 Hz, 1H), 7.64–7.51 (m, 4H), 7.43–7.30 (m, 5H), 7.04 (dd, *J*₁ = 7.6 Hz, *J*₂ = 1.2 Hz, 1H), 4.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 155.27, 155.25, 140.1, 136.7, 136.4, 134.1, 129.7, 128.9, 128.6, 128.5, 127.3, 126.5, 119.5, 119.3, 108.1, 56.2. HRMS calcd for C₁₈H₁₅NO: 261.1154. Found: 261.1150.

N-(2-(8-Chloroquinolin-2-yl)-1-phenylethyl)-4-methylbenzenesulfonamide (**4ja**).¹⁸ White solid (82% yield): mp 169–171 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.16 (d, *J* = 6.0 Hz, 1H), 7.94 (d, *J* = 8.4 Hz, 1H), 7.86 (dd, J₁ = 7.2 Hz, J₂ = 1.2 Hz, 1H), 7.66 (dd, J₁ = 8.4 Hz, J₂ = 1.2 Hz, 1H), 7.54 (d, J = 8.4 Hz, 2H), 7.45 (t, J = 8.0 Hz, 1H), 7.22–7.19 (m, 2H), 7.14–7.09 (m, 3H), 7.04 (d, J = 8.0 Hz, 1H), 6.93 (d, J = 8.4 Hz, 2H), 4.86 (m, 1H), 3.35-3.30 (m, 1H), 3.27-3.20 (m, 1H), 2.25 (s, 3H); ^{13}C NMR (100 MHz, CDCl_3) δ 159.4, 143.4, 142.5, 141.1, 138.1, 137.4, 133.3, 130.0, 129.1, 128.3, 128.1, 127.2, 127.0, 126.9, 126.7, 126.5, 123.1, 57.3, 43.8, 21.5. HRMS calcd for C₂₄H₂₁ClN₂O₂S: 436.1012. Found: 436.1018. Crystal Data for 4ja. Empirical formula: $C_{24}H_{21}CIN_2O_2S$, MW = 436.94, T = 293(2) K, λ = 0.71073 Å, tetragonal, P42/n, a = 22.6880 (5) Å, b = 22.6880 (5) Å, c = 8.4809(3) Å, $\alpha = 90.00^{\circ}$, $\beta = 90.00^{\circ}$, $\gamma = 90.00^{\circ}$, V = 4365.5 (2) Å³, Z = 8, $D_{\text{calcd}} = 1.330 \text{ mg/m}^3$, F(000) = 1824. Crystal size $0.36 \times 0.32 \times 0.26 \text{ mm}$, independent reflections 3836 [R(int) = 0.0310], reflections collected 13919, refinement method, full-matrix least-squares on F^2 , goodness-offit on F^2 1.069, final R indices $[I > 2\sigma(I)] R_1 = 0.0541$, $wR_2 = 0.1708$, R indices (all data) $R_1 = 0.0824$, $wR_2 = 0.1838$, Largest diff. peak and hole 1.557 and $-0.232 \text{ e} \cdot \text{Å}^{-3}$.

N-(2-(Benzo[h]quinolin-2-yl)-1-phenylethyl)-4-methylbenzenesulfonamide (**4ka**). Light yellow solid (60% yield): mp 124−126 °C; ¹H NMR (400 MHz, CDCl₃) δ 9.26 (d, *J* = 7.2 Hz, 1H), 7.94−7.92 (m, 2H), 7.86−7.72 (m, 3H), 7.59 (d, *J* = 8.8 Hz, 1H), 7.47 (s, 1H), 7.32−7.17 (m, 7H), 7.09 (d, *J* = 8.0 Hz, 1H), 6.70 (d, *J* = 8.0 Hz, 1H), 4.80−4.70 (m, 1H), 3.30−3.20 (m, 2H), 2.13 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 156.7, 145.7, 142.5, 141.6, 137.2, 136.8, 133.9, 131.0, 129.0, 128.7, 128.5, 128.1, 127.8, 127.7, 127.4, 126.9, 126.8, 125.1, 125.0, 124.4, 122.5, 58.1, 44.9, 21.4. HRMS calcd for C₂₈H₂₄N₂O₂S: 452.1558. Found: 452.1565.

4-Methyl-N-(1-phenyl-2-(quinolin-2-yl)propyl)benzenesulfonamide (**4Ia**).⁴ Light yellow oil (dr = 1.8:1, 70% yield): ¹H NMR (400 MHz,

CDCl₃) δ 8.09 (d, *J* = 8.4 Hz, 1.56H), 7.88 (dd, *J*₁ = 8.4 Hz, *J*₂ = 5.6 Hz, 1.56H), 7.75–7.70 (m, 3.12H), 7.54–7.51 (m, 1.56H), 7.47 (d, *J* = 6.8 Hz, 1.0H), 7.39 (d, *J* = 8.0 Hz, 2.0H), 7.28–7.24 (m, 1.4), 7.15–7.13 (m, 3.5H), 7.07–7.01 (m, 5H), 6.97–6.89 (m, 3.6H), 6.70 (d, *J* = 8.0 Hz, 1.12H), 4.62 (t, *J* = 6.0 Hz, 1.0H), 4.54 (t, *J* = 4.4 Hz, 0.56H), 3.34–3.32 (m, 1.56H), 2.25 (s, 3.0H), 2.17 (s, 1.68H), 1.29 (d, *J* = 6.8 Hz, 3.0H), 1.25 (d, *J* = 7.2 Hz, 1.68H); ¹³C NMR (100 MHz, CDCl₃) δ 163.0, 162.4, 147.3, 147.0, 142.5, 142.4, 140.9, 139.7, 138.1, 137.0, 136.8, 136.6, 129.9, 129.86, 129.7, 129.2, 129.0, 128.94, 128.89, 128.1, 128.0, 127.6, 127.5, 127.2, 127.1, 127.07, 127.02, 126.9, 126.8, 126.5, 126.47, 126.4, 121.2, 120.8, 62.9, 61.8, 47.5, 46.6, 21.42, 21.36, 19.2, 14.3. HRMS calcd for C₂₅H₂₄N₂O₂S: 416.1558. Found: 416.1555.

(*E*)-1-Styrylisoquinoline (**3ma**). White solid (*E*:*Z* > 99:1, 78% yield): mp 116–118 °C; ¹H NMR (400 MHz, CDCl₃) δ 8.55 (d, *J* = 5.6 Hz, 1H), 8.35 (d, *J* = 8.0 Hz, 1H), 7.99 (s, 2H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.71–7.58 (m, 4H), 7.55 (d, *J* = 5.6 Hz, 1H), 7.43–7.38 (m, 2H), 7.35–7.30 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 154.6, 142.5, 137.0, 136.9, 136.1, 130.0, 128.9, 128.7, 127.6, 127.4, 127.3, 126.9, 124.6, 122.9, 120.0. HRMS calcd for C₁₇H₁₃N: 231.1048. Found: 231.1053.

(*E*)-2-*Methyl*-6-styrypyridine (**30a**).⁶ Yellow oil (*E*:*Z* > 99:1, 35% yield): ¹H NMR (400 MHz, CDCl₃) δ 7.60–7.53 (m, 4H), 7.39–7.34 (m, 2H), 7.31–7.28 (m, 1H), 7.25 (d, *J* = 8.4 Hz, 1H), 7.18 (d, *J* = 16.0 Hz, 1H), 7.02 (d, *J* = 7.6 Hz, 1H), 2.59 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 158.4, 155.2, 136.9, 132.7, 129.1, 128.8, 128.44, 128.35, 127.2, 127.3, 121.9, 118.9, 24.7. HRMS calcd for C₁₄H₁₃N: 195.1048. Found: 195.1045.

ASSOCIATED CONTENT

Supporting Information. ¹H and ¹³C NMR spectra and crystal data. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail: zwang3@ustc.edu.cn.

ACKNOWLEDGMENT

We are grateful to the Natural Science Foundation of China (20932002, 20972144, 2010CB912103, and 90813008), the Chinese Academy of Sciences, and the Graduate Innovation Fund of USTC for support.

REFERENCES

For selected reviews on C-H bond functionalization, see:
 (a) Tobisu, M.; Chatani, N. Angew. Chem., Int. Ed. 2006, 45, 1683.
 (b) Kakiuchi, F.; Chatani, N. Adv. Synth. Catal. 2003, 345, 1077.
 (c) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107, 174.
 (d) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew. Chem., Int. Ed. 2009, 48, 5094. (e) Li, C.-J. Acc. Chem. Res. 2009, 42, 335. (f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun. 2010, 46, 677. (g) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293–1314.

(2) For selected examples on sp³ C–H bond functionalization, see: (a) Chatani, N.; Asaumi, T.; Yorimitsu, S.; Ikeda, T.; Kakiuchi, F.; Murai, S. J. Am. Chem. Soc. **2001**, 123, 10935. (b) Zaitsev, V. G.; Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. **2005**, 127, 13154. (c) Chen, X.; Goodhue, C. E.; Yu, J.-Q. J. Am. Chem. Soc. **2006**, 128, 12634. (d) Watanabe, T.; Oishi, S.; Fujii, N.; Ohno, H. Org. Lett. **2008**, 10, 1759. (e) Shabashov, D.; Daugulis, O. J. Am. Chem. Soc. **2010**, 132, 3965.

(3) (a) Campeau, L.-C.; Schipper, D.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 3266. (b) Schipper, D. J.; Campeau, L.-C.; Fagnou, K. Tetrahedron. 2009, 65, 3155. (c) Mousseau, J. J.; Larivée, A.; Charette, A. B. Org. Lett. 2008, 10, 1641. (d) Burton, P. M.; Morris, J. A. Org. Lett. 2010, 12, 5359. (e) Jiang, H.; Chen, H.; Wang, A.; Liu, X. Chem. Commun. 2010, 46, 7259. (f) Tsurugi, H.; Yamamoto, K.; Mashima, K. J. Am. Chem. Soc. 2011, 133, 732. (g) Song, G. Y.; Su, Y.; Gong, X.; Han, K. L.; Li, X. W. Org. Lett. 2011, 13, 1968.

(4) (a) Qian, B.; Guo, S.; Shao, J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H. J. Am. Chem. Soc. **2010**, 132, 3650. (b) Qian, B.; Guo, S.; Xia, C.; Huang, H. Adv. Synth. Catal. **2010**, 352, 3195. (c) Rueping, M.; Tolstoluzhsky, N. Org. Lett. **2011**, 13, 1095.

(5) Komai, H.; Yoshino, T.; Matsunaga, S.; Kanai, M. Org. Lett. 2011, 13, 1706.

(6) Concurrently, a similar reaction in the presence of iron was reported: Qian, B.; Xie, P.; Xie, Y; Huang, H. *Org. Lett.* **2011**, *13*, 2580–2583.

(7) (a) Zamboni, R.; Belley, M.; Champion, E.; Charette, L.; DeHaven, R.; Frenette, R.; Gauthier, J. Y.; Jones, T. R.; Leger, S. J. Med. Chem. **1992**, 35, 3832. (b) Nakayama, H.; Loiseau, P. M.; Bories, C.; Torres de Ortiz, S.; Schinini, A.; Serna, E.; Rojas de Arias, A.; Fakhfakh, M. A.; Franck, X.; Figadere, B.; Hocquemiller, R.; Fournet, A. Antimicrob. Agents Chemother. **2005**, 49, 4950. (c) Mekouar, K.; Mouscadet, J.-F.; Desmaele, D.; Subra, F.; Leh, H.; Savouré, D.; Auclair, C.; d'Angelo, J. J. Med. Chem. **1998**, 41, 2846. (d) Franck, X.; Fournet, A.; Prina, E.; Mahieux, R.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. **2004**, 14, 3635. (e) Fournet, A.; Mahieux, R.; Fakhfakh, M. A.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. **2004**, 16, Fakhfakh, M. A.; Fournet, A.; Prina, E.; Mouscadet, J.-F.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. Lett. **2003**, 13, 891. (f) Fakhfakh, M. A.; Fournet, A.; Prina, E.; Mouscadet, J.-F.; Franck, X.; Hocquemiller, R.; Figadère, B. Bioorg. Med. Chem. **2003**, 11, 5013. (g) Chang, F. S.; Chen, W. C.; Wang, C. H.; Tzeng, C. C.; Chen, Y. L. Bioorg. Med. Chem. **2010**, 18, 124.

(8) (a) Fields, E. K. J. Am. Chem. Soc. 1949, 71, 1495. (b) Kaslow,
C. E.; Stayner, R. D. J. Am. Chem. Soc. 1945, 67, 1716. (c) Compton, C.;
Bergmann, W. J. Org. Chem. 1947, 12, 363. (d) Wang, M.; Gao, M.;
Miller, K. D.; Sledge, G. W.; Hutchins, G. D.; Zheng, Q.-H. Eur. J. Med.
Chem. 2009, 44, 2300. (e) Galiazzo, G.; Bortolus, P.; Gennari, G. Gazz.
Chim. Ital. 1990, 120, 581. (f) Izmail'skii, V. A.; Solodkov, P. A. Zh.
Obshch. Khim. 1959, 29, 3930.

(9) (a) Yamanaka, M.; Nishida, A.; Nakagawa, M. J. Org. Chem. 2003, 68, 3112. (b) Wynne, J. H.; Price, S. E.; Rorer, J. R.; Stalick, W. M. Synth. Commun. 2003, 33, 341.

(10) Wu, J.; Xia, H.-G.; Gao, K. Org. Biomol. Chem. 2006, 4, 126.

(11) Sivaprasad, G.; Rajesh, R.; Perumal, P. T. *Tetrahedron Lett.* 2006, 47, 1783.

(12) Hamada, Y.; Takeuchi, I. J. Org. Chem. 1977, 42, 4209.

(13) Sridharan, V.; Avendaño, C.; Carlos Menéndez, J. Tetrahedron. 2009, 65, 2087.

(14) Ryabukhin, S. V.; Plaskon, A. S.; Volochnyuk, D. M.; Pipko,

S. E.; Shivanyuk, A. N.; Tolmachev, A. A. J. Comb. Chem. 2007, 9, 1073.

(15) Fozard, A.; Bradsher, C. K. J. Org. Chem. **1966**, *31*, 3683.

(16) Horwitz, L. J. Am. Chem. Soc. 1955, 77, 1687.

(17) Wang, D.-W.; Wang, X.-B.; Wang, D.-S.; Lu, S.-M.; Zhou, Y.-G.;
 Li, Y.-X. J. Org. Chem. 2009, 74, 2780.

(18) CCDC-790188 contains the supplementary crystallographic data for **4ja**. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/ data_request/cif.